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Abstract: The support and development of the primary agri-food sector is receiving increasing
attention. The complexity of modern farming issues has lead to the widespread penetration of
Integrated Pest Management (IPM) Decision Support Systems (DSS). IPM DSSs are heavily dependent
on numerous conditions of the agro-ecological environment used for cultivation. To test and validate
IPM DSSs, permanent crops, such as olive cultivation, are very important, thus this work focuses
on the pest that is most potentially harmful to the olive tree and fruit: the olive fruit fly. Existing
research has indicated a strong dependency on both temperature and relative humidity of the
olive fruit fly’s population dynamics but has not focused on the localised environmental/climate
conditions (microclimates) related to the pest’s life-cycle. Accordingly, herein we utilise a collection of
a wide-range of integrated sensory and manually tagged datasets of environmental, climate and pest
information. We then propose an effective and efficient two-stage assignment of sensory records into
clusters representing microclimates related to the pest’s life-cycle, based on statistical data analysis
and neural networks. Extensive experimentation using the two methods was applied and the results
were very promising for both parts of the proposed methodology. The identified microclimates in
the experimentation were shown to be consistent with intuitive and real data collected in the field,
while their qualitative evaluation also indicates the applicability of the proposed method to real-life
uses.

Keywords: microclimate; olive fruit fly; neural networks; cluster analysis; timeseries data mining

1. Introduction

The need for the support and development of the primary agri-food sector is currently receiving
increasing attention both at national and global levels. The obvious reason is the importance of modern
studies attributing to the quality of nutrition of modern man [1]. The development of healthier food in
appropriate quantities by using biological methods or cultivation practices with fewer chemicals and
fertilisers is indeed a requirement in modern societies and markets. Still, the necessity for the active
reduction of chemicals and fertilisers creates problems in modern farming. Moreover, variations in the
underlying knowledge of related pests’ populations, disease vectors, geo-location and related climatic
conditions make generic (crop- and location- wise) pest and disease management systems very hard
to achieve.

The complexity of the aforementioned modern farming issues have lead to the widespread
penetration of Integrated Pest Management (IPM) Decision Support Systems (DSS) [2] since the
early 1960’s, with the aim of providing a holistic view of agro-ecosystems. Such DSSs provide
support to the decision making process of farmers and related stakeholders in a domain that is both
highly-interdisciplinary, as well as heavily dependent on current developments in sensory hardware
and analysis of the respective collected data.
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One of the key parameters used in IPM DSSs is the above and below ground climatic conditions of
the agro-ecological environment used for cultivation [3,4] and their relation to the pests’ life-cycle [5–7].
Accordingly, a combination of crop requirements—as far as (a) geomorphology (e.g., location of crops
in relation to near-by hills or mountainous summits, proximity to sea/rivers and elevation); (b) climate
and meteorological conditions (such as absolute, mean and periodicity of temperature, humidity,
and solar radiation); as well as (c) related pests’ biological cycles—are some of the mostly important
aspects required by IPM DSSs.

In order to test and validate IPM DSSs, permanent crops are needed for which the pests’ life-cycle
is well known. Olives (Olea Europaea) are the most dominant permanent crop in the European
Union (EU) in terms of occupied areas (40% of total area of permanent crops [8]) with more than
1500 cultivars [9] in the Mediterranean. As a result, olive production is very important in numerous
EU countries, while by 2030 olive oil growth is set to increase [10] further. Olives have a wealth of
organisms that are potentially harmful to both the olive tree and the olive fruits, although the olive
fruit fly (Bactrocera Oleae) is by far the most damaging [11].

Extensive research has indicated a strong dependency on both temperature and relative humidity
of the olive’s fruit fly population dynamics [12–17]. These parameters are in turn affected by a litany of
environmental/climate conditions such as variations of solar radiation, cloud coverage, the presence
of shading and proximity to the sea/mountains [17], to name but a few, which we collectively refer
to as a “microclimates” based on their highly temporal and spatial character and relation to aspects
affecting the olive fruit fly. Due to the significance of olive production and its widespread presence,
an olive grove may be in more than one such microclimate and thus addressing its pests requires
identification of these highly specific microclimates.

Motivation and Contribution

It is thus evident that the identification of microclimates related to the olive fruit fly’s life-cycle is
a very important parameter in the attempt to tackle it. The implications of high accuracy olive fruit
fly’s life-cycle modeling (based on the aforementioned microclimates) are far reaching: a systematic
simulation of the pest’s life-cycle will lead to accurate prognosis on their outbreak, thus allowing
proactive treatment that will minimise both the unnecessary application of pest management, especially
when done with chemical inhibitors, as well as the intensity of the application to the exact required
level; this will in turn allow farmers to make the best strategic choice, aiming at ameliorated quality
of the crop and minimisation of the treatment’s cost and labour. Nevertheless, and to the best of our
knowledge, existing research has not shed light on the identification of microclimates related to the
olive fruit fly’s life-cycle.

To address the aforementioned requirements, in this work, we utilise a wealth of sensory
measurements and statistical data analysis methodologies as well as neural networks in order to
identify localised environmental/climate conditions that affect the life-cycle of the olive fruit fly.
Of the available data parameters, we also provide quantitative evidence of their contribution to the
identification/clustering of microclimates. In detail, the contributions of this work are:

• the collection of a wide-range integrated sensory and manually tagged dataset related to
environmental, climate and pests’ information;

• the proposal of an effective and efficient two-stage assignment of sensory records into clusters;
• extensive experimentation using statistical methodologies and neural networks in order to identify

microclimates related to the olive fruit fly’s life-cycle.

The rest of the paper is organised as follows: Section 2 explores related work on microclimate
identification and olive-fruit fly evolution, while Section 3 presents the dataset utilised herein
containing environmental measurements as well as fruit fly trap counts. Subsequently, Section 4
discusses the proposed methodologies for the identification of micro-climatic conditions related to
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the olive fruit fly. Next, Section 5 presents the setup used for the experimentation, the results of the
experiments and the evaluation of the results obtained. Finally, the paper is concluded in Section 6.

2. Related Research

2.1. Microclimate Identification

Cantlon performed a study on the south and north facing slopes of a ridge in central New Jersey,
USA, in regard to differences in a wide variety of vegetation based on microclimates, through field
measurements collected for two years [18]. The results reported therein indicate significant effects of
the microclimates on the “structure and composition of the vegetation in the two slopes”. Furthermore,
in regard to microclimatic conditions, Cantlon observed that between the slopes, when compared
with microclimatic layers, the greatest differences in atmospheric moisture were observed at the lower
levels (“at 5 cm, the lowest level observed”) of the slopes while there was a decrease in difference at
higher levels (e.g., “at 2 m, the highest level observed”).

Van Cooten et al. [19] tried to identify microclimates with regard to precipitation and rainfall
trends across the Lake Pontchartrain Basin of South-East Louisiana, USA by analysing environmental
data from 17 stations located throughout the basin from 1870 to 2000. Through their statistical analysis
the authors found that there was a statistically significant difference between the monthly average
rainfall of the North shore and the South shore stations.

Microclimate identification inside urban areas has gained a lot of attention throughout the years.
Specifically, in the work by Shafieiyoun [20], an attempt was made to identify microclimates inside
Isfahan, Iran, by dividing it into five regions based on their surfaces, by measuring the environmental
parameters of each region over a 12 month period. The results obtained therein indicated that
significant differences exist (p < 0.01) for all 12 months of the year for air temperature and relative
humidity between city stations and reference stations with a maximum difference in average monthly
air temperature equal to 6.07 ◦C, and a maximum difference in average monthly relative humidity
equal to 40.73%.

Another urban study [21] analysed, through field measurements, how the microclimatic
conditions affect the thermal conditions of the city canyons of Serres, Greece. The authors obtained
results indicating that “the wind speed in the pedestrians’ level (1.8 m) is the 1/3–1/4 of the suburban
area” as well as that “air temperatures in the study area are about 5.0–5.5 ◦C higher than in the
suburban area, during the afternoon and night time, while during the morning, the air temperatures in
the city are 7.0 ◦C lower, thus reaching the conclusion that the city’s geometry is important in affecting
microclimatic conditions in an urban area.

Wong et al. [22] investigated how microclimate conditions differ between two pedestrian canyons
in Singapore, with regard to greenery and building distribution. The results obtained therein indicate
that “average air temperature inside the canyon with trees is lower by around 0.7–1.18 ◦C” when
compared to a tree-less canyon during daytime while the canyon with trees also “maintains its coolness
at about 0.4–0.58 ◦C during night-time.” Naturally, relative humidity is measured therein to be up
to 5% on average in the canyon with trees when compared to the canyon without trees. Thus, they
conclude that the amount of vegetation and shade from surrounding buildings had an effect on the
coolness of the examined canyons.

Where urban microclimates are concerned, Stabler et al. [23] studied how urban plant cover and
land use relate to each other in forming microclimates in the city of Phoenix, Arizona, USA. In their
findings, they concluded that microclimates are an interactive effect of plant density and urban entities
such as parking lots and buildings, in contrast to the unsupported hypothesis that “urban forest cover
and latent heat fluxes are the principle determinants of microclimate in the Phoenix area.”

Shahrestani et al. [24] investigated the characteristics of urban microclimates in the city of
London, UK. Their findings include that “buildings within an urban area, are operating against
their own individual microclimatic variables rather than the meteorological weather data” and
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thus urban planning and buildings’ thermal and energy performance require significant evaluation.
They concluded that urban microclimates are a result of the layout and configuration of the buildings,
since high buildings can block sunlight and decrease wind permeability.

However, research on predicting microclimates has also been in the spotlight. Zhang et al. [25]
utilised the Energy Balance model proposed by Avissar & Mahrer [26] in order to predict the
microclimate inside a greenhouse achieving root mean squared differences between the predicted and
actual air and leaf temperatures, relative humidity and leaf wetness duration at 1.2 and 1.8 ◦C, 5.8% and
1.9 h·d−1 respectively. Similarly, Wang and Boulard [27]predicted the microclimate of a greenhouse by
using the Gembloux Greenhouse Dynamic Model achieving deviations between the predicted and
experimental soil temperature, interior air temperature, relative humidity and crop transpiration at
0.5 ◦C, 0.8 ◦C, 4.3% and 17.8 W/m2, respectively. Finally, Kearney et al. [28] proposed a microclimate
model in order to predict microclimatic conditions on a continental scale using data on soil and weather,
achieving prediction of the variation as far as hourly soil temperature is concerned in 85% of the cases
with an accuracy of 2–3.3 ◦C.

Of the three aforementioned works on predicting microclimates, Zhang et al. [25,27] focus on
a greenhouse’s microclimate prediction with input parameters that include soil characteristics as well
as output predictions that are at the granularity level of leaf (leaf wetness and crop transpiration).
On the other hand, the work of Kearney et al. [28] also includes a soil’s characteristics as input variables
but focuses on prediction of the soil’s temperature. Accordingly, their modelling and methodologies
differ significantly to those explored herein.

2.2. Climatic Conditions’ Effect on Olive Fruit Fly

Microclimates have been found to play a significant role in the physiology of an organism ([29,30]),
especially for insects such as the olive fruit fly. The olive fruit fly’s stages of development include
egg, larva, pupal and adult. When larvae, olive fruits represent the growth habitat of the stage and
accordingly adult female flies deposit their eggs within the olive fruits. Once the larva emerges it
feeds on the fruit causing fruit damage or even premature drop. The pupation stage can happen either
inside the fruit or in the soil and when the adult flies emerge a new cycle of mating and oviposition
begins [31]. The number of eggs deposited by adult female flies range from 50 to 400 while oviposition
usually happens in the ratio of one egg per fruit. Depending on mostly meteorological conditions,
the fly’s generations per year range from 3 to 5. Overwintering of adults or pupas takes place in the soil
or in dropped fruits. Depending mostly on temperature (optimal temperature for development ranges
from 20 ◦C to 30 ◦C), the first generation usually begins in the spring and there can be numerous or
even continuous generations. The fly’s lifetime depends on temperature and food and ranges from 2
to 6 months [32].

In their study, Kounatidis et al. [33], through a network of 700 olive fruit fly traps, investigated how
hotspots and cold-spots of olive fruit flies change between seasons in regard to elevation. Clustering of
trapped flies was shown to be significantly related to elevation (ranging from sea level to 700 m above
sea level) with p < 0.01. The authors found that during summer climatic conditions, for elevation
above 200 m, were favorable for the development of the olive fruit fly and thus resulted in the formation
of hotspots for captures, while on lower elevations captures were low. On the other hand, during fall
climatic conditions below 200 m became more favorable for the olive fruit fly, resulting in hotspots for
high capture counts, and therefore captures at higher elevations declined.

Furthermore, Kalamatianos and Avlonitis [17] examined through simulations the effect of different
microclimates affecting the population dynamics of the olive fruit fly and by extension how the
identification of microclimates could dictate population control policies. Specifically, they divided a large
area of olive groves on the island of Kerkyra, Greece into four microclimates based on collected
environmental data from installed sensors in the area and topography factors. For each resulting
microclimate they simulated the population evolution of the olive fruit fly and concluded the effect
of each microclimate on the delayed emergence of each subsequent generation of the olive fruit fly. Finally,
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they showed that current population control policies in the region without taking into account microclimate
factors could have a small effect on the population of the olive fruit fly.

3. Integrated Environmental and Pests’ Dataset

The dataset utilised herein contains field-based integrated environmental measurements as well
as fruit fly trap counts collected from the locations examined. Pest trapping efforts are used for
a variety of reasons within the IPM domain [34] though in this context trapping is used explicitly for the
quantification of olive fruit flies in olive groves and thus evaluate its infestation [35]. All environmental
measurements were gathered by types of two sensors, the TinyTag (https://www.geminidataloggers.
com/) and SmartCitizen (https://smartcitizen.me/) sensor models. These sensors measure temperature
(in Celsius), humidity percentage, light intensity (in lux), carbon monoxide (in kOhm), nitrogen dioxide
(in kOhm) and noise (in dB). To support a long timespan of data collection, the sensors were battery
powered and could re-charge using solar energy that was captured by a solar panel. The measurement
interval was set to 15 min and in every measurement the battery percentage, solar panel’s voltage and
time-date of the measurement were also included. It should be noted that soil information is not used
in the above measurements.

Accompanying the aformentioned measurements is the next part of the dataset that consists of
weekly trap counts of the years 2015–2018 between the months of July and September, that is, the time
period in which olive fruit flies are most active and are able to reach peak population [32]. All in
all, a total of 92 locations were used to deploy traps, using a mixture of TinyTag and SmartCitizen
sensors. The locations were situated in North-West Kerkyra, Greece and their selection was based on
maximisation of the diversity of environmental characteristics of olive groves, in terms of elevation,
mean relative humidity, orientation to solar radiation based on near-by hills and proximity to the
sea. These locations can be intuitively separated into three types: on or near to the coast of the island
(designated henceforth as “Beach” types), on or very near to the top of hills (designated henceforth as
“Hill” types) and valley-type locations that are surrounded by hills and have a north-eastern orientation
(designated henceforth as “Valley” types). Indicative/selected locations from the 92 aforementioned
are detailed in Table 1 and shown on the map in Figure 1.

Figure 1. Locations of selected sensors. (Map data: Google, SIO, NOAA, U.S. Navy, NGA and GEBCO).

https://www.geminidataloggers.com/
https://www.geminidataloggers.com/
https://smartcitizen.me/
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Table 1. Selected data collection locations.

Location Label Altitude (m) Latitude Longitude

Beach
1 Agios Georgios Pagon 38 39.70558105 19.68224189
2 Afionitika 24 39.737251 19.654854
3 Avliotes 106 39.78027306 19.65994629

Hill
4 Agios Athanasios 212 39.7243062 19.7172308
5 Dafni 144 39.72888173 19.7024659
6 Rachtades 135 39.75143104 19.69852521

Valley
7 Gavrades 58 39.73986665 19.71007243
8 Psathilas 39 39.74539178 19.71654322
9 Kounavades 39 39.75688385 19.69359849

For the augmentation of the dataset, the underlying causal connection between the environmental
measurements (i.e., temperature, humidity, light’s intensity, carbon monoxide, nitrogen dioxide,
and noise) at a time t and the number of fruit flies caught at time tτ was interrelated, where τ represents
the number of days between the environmental conditions occurring (based on the measurement) and
their impact on the number fruit flies is measured and equals approximately five.

4. The Proposed Method

In order to identify the available microclimates affecting the olive fruit fly’s life-cycle (i.e., all stages
from egg to adult) as described by Kalamatianos and Avlonitis [17], herein are proposed two
methodologies that, despite their diverse scope, offer significant insight. Initially, we investigate
statistical data analysis methodologies for the identification of the groupings (i.e., clusters) of
microclimates based on the records of the environmental and pest sensors, later we address the
requirement for the efficient assignment of new sensor records to existing groups of microclimates.

4.1. Statistical Analysis for Microclimates’ Grouping

There are several clustering algorithms that are suitable for the experimental purposes proposed
herein. In detail, the following set of machine learning algorithms were experimented with in order to
group the data collected into, as closely as possible, related groups:

• Canopy ([36]), an un-grouped pre-clustering algorithm that partitions input data into proximity
regions (canopies) in the form of hyperspheres.

• Cobweb ([37,38]), a hierarchical grouping algorithm that organises observations using a sorting tree.
• EM ([39]), a probabilistic grouping algorithm that assigns each observation with a probability

distribution indicating the likelihood of belonging to each of the examined groups.
• FartherstFirst algorithm ([40]), based on a sequence of points the first of which is selected arbitrarily

while each successive point is as far as possible from the set of previously-selected points.
• FilteredClusterer ([41]), an arbitrary clusterer on data that has been passed through an arbitrary

filter the structure of which is based exclusively on the training data.
• HierarchicalClusterer ([41]), a cluster analysis aiming to build a hierarchy of clusters using the

agglomerative approach.
• MakeDensityBasedClusterer ([41]), a metaclusterer wrapping clustering algorithms aiming to

output a probability distribution and density.
• K-means ([42]), one of the simplest unsupervised learning techniques aimed at dividing

observations into k arrays in which each observation belongs to the array with the closest mean.
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4.2. Neural Network for New Records’ Classification

The interrelated data of the dataset, as discussed in Section 3, presents each record as
a multidimensional vector that consists of environmental and pest information. The sensor-based data
research direction explored herein, apart from the key issue of grouping data by similarity (i.e., the clustering
methodology proposed in Section 4.1), introduces more interesting research issues such as the management
of collected data after the initial grouping. The issue is more pressing given the Big Data nature of the
collected information as far as mostly their volume, but also their velocity and variety [43].

Having a set of predefined groupings/clusters makes the management and assignment of newly
collected (interrelated) records much easier and more computationally efficient with classification
approaches based on pattern recognition methods. In detail, following the initial process of cluster
definition based on an initial adequate volume of data, classification approaches can then handle the
assignment of new records on existing clusters. By use of performance measurements, new records
could either be incorporated into existing clusters (if the classification’s performance is below
a threshold) or indicate the necessity for cluster re-definition (if the classification’s performance is
above the threshold). Thus, for a fixed location, wherein the microclimates indicate an increased degree
of stability, by following the proposed methodology the continuous flow of records will gradually
invoke the costly clustering process less and less and the classification approach more, all the while
retaining the ability to organise records based on relevant attributes and not static characteristics such
as their location.

Accordingly, we propose the use of a shallow neural network pattern recognition approach and
especially a two-layer feed-forward network [44] for the classification of the multidimensional vectors
of the dataset’s records into predefined clusters. The proposed methodology contains a number of
hidden layer neurons, the size of which is an examination parameter.

5. Experimental Evaluation

To show the efficiency of the proposed methodologies and the feature vector, in this section
a number of experiments are presented. The experimentation’s pre-processing, platform and datasets
are also described, followed by the performance and qualitative analysis of the experimental results.

5.1. Experimental Setup & Data

5.1.1. Statistical Analysis Grouping

Data collection: Prior to using the data for the experiments, a pre-processing treatment of the data
was performed. Initially, the sub-set of time periods in which all sensors had recorded measurements
was identified, as, for technical reasons, data collection was not entirely consistent. For the purposes of
this examination, the common time period selected was between 24 September 2018 and 8 October 2018.
Subsequently, corrupted data were also removed from the data-set (i.e., the dates from 30 September
2018 to 2 October 2018).

Figures 2 and 3 show the recorded temperature and humidity for selected sensors in the
aforementioned common time period. The blue line indicates the actual data, while the red line
shows the data after smoothing by use of overlapping rolling window mean.
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Figure 2. Recorded temperatures for selected locations of “Hill” type.

Figure 3. Recorded humidity for selected locations of “Valley” type.

Feature selection: In order to conduct the experiments, the collected environmental data were
converted to the following set of numerical attributes:

• Temperature

1. Minimum temperature of the time series.
2. Average temperature of the time series.
3. Maximum temperature of the time series.
4. Typical temperature deviation of the time series.
5. Absolute difference in maximum and minimum temperature.
6. Average growth rate from minimum daily temperature to maximum daily temperature.
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7. Average rate of decrease from maximum daily temperature to local minimum daily temperature.
8. Average maximum daily temperature.
9. Average minimum daily temperature.

10. Average absolute difference between maximum and minimum daily temperature.
11. Average degree of similarity of daily temperature time series for "Beach" locations.
12. Average degree of similarity of daily temperature time series for "Hill" locations.
13. Average degree of similarity of daily temperature time series for "Valley" locations.

• Humidity

1. Minimum humidity of the time series.
2. Mean humidity of the time series.
3. Maximum time series humor.
4. Typical moisture deviation of the time series.
5. Absolute difference in maximum and minimum humidity.
6. Average minimum daily humidity.
7. Average maximum daily humidity.

Feature vector extraction: Of the 20 aforementioned attributes, the final selection of the attributes
for the creation of the vector was based on the evaluation of each attribute in terms of Information Gain,
Correlation and the Information gain ratio relative to the Microclimate class, that is, the location type.

Observing the diagram of Figure 4, it is evident that 7 of the 20 original features have
an information gain ratio of 1 while the remainder are 0. More specifically, these are:

• Mean temperature of the time series.
• Typical temperature deviation of the time series.
• Average minimum daily temperature.
• Average degree of similarity of daily temperature time series for “Beach” locations.
• Average degree of similarity of daily temperature time series for “Hill” locations.
• Average degree of similarity of daily temperature time series for “Valley” locations.
• Mean humidity of the time series.

Figure 4. Information gain ratio of all examined attributes relative to the Microclimate class.
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Figure 5 shows the value of each attribute by their correlation coefficient in regard to the
“Microclimate” cluster class. As can be seen from the diagram, the seven attributes that showed
the highest information gain ratio (see Figure 4) plus attribute 10 (“Average absolute difference
between maximum and minimum daily temperatures”) have the highest correlation (greater than 0.5).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Attributes

0.0

0.2

0.4

0.6
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Figure 5. Correlation of all examined attributes relative to the Microclimate class.

Finally, the diagram in Figure 6 shows the information gain of the candidate features for the
feature vector. As shown in the diagram, the same seven characteristics as the diagram of Figure 4
show the greatest gain of information. Specifically, characteristic 11 provides the highest information
gain (1.585), while the remaining six characteristics (2, 4, 9, 12, 13, 15) offer the same gain of information,
0.918. The remaining features do not provide any gain of information.
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Figure 6. Information gain of all examined attributes relative to the Microclimate class.

From the above analysis the characteristics selected for the composition of the feature vector are
the following:

• Average degree of similarity of daily temperature time series for “Beach” locations.
• Average degree of similarity of daily temperature time series for “Hill” locations.
• Average degree of similarity of daily temperature time series for “Valley” locations.
• Average minimum daily temperature.
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• Mean humidity of the time series.
• Mean temperature of the time series.
• Typical temperature deviation of the time series.

In order to conduct the clustering experiments, the WEKA Machine Learning Platform [45] was
used. For the K-Means algorithm, the number of clusters ranged from 2 to 3 and the Manhattan and
Euclidean distance functions were examined.

5.1.2. NN-Based Classification

In the neural network (NN)-based classification experimentation using the shallow neural network
pattern recognition approach, a two-layer feed-forward network architecture was used containing
a varying number of hidden neurons in order to test the effect of the neuron availability. Moreover,
the experimentation also included various alternatives as far as the division of the dataset into training,
validation, and testing subsets is concerned. The performance evaluation was tested based on manually
pre-selected microclimates and the ability of the network to assign records that had not been included
in the training and validation processes at the appropriate microclimate during the testing phase.

The training function used was the Scaled Conjugate Gradient Backpropagation function
which updates weight and bias values according to the scaled conjugate gradient method [46].
The performance function used was the minimising cross-entropy function (ranging in (0, 1) with
close to zero values indicating no error) that applies heavy penalties on outputs that exhibit extreme
inaccuracy and light penalty for close to correct classifications. Moreover, for each classification,
the percentage of error, that is, the fraction of samples misclassified, was also calculated in order to
provide a degree of effectiveness of the method.

Finally, it should be noted that for each of the parameters examined (number of neurons and
division of the dataset), the resulting performance of the network was averaged over 10 runs due to
the randomness in the division of the dataset into training, validation and testing subsets and in order
to receive high quality results.

In order to conduct the NN-based classification experimentation, the software MATLAB [47]
version “9.4.0.813654 (R2018a)” was used.

5.2. Experimental Results

5.2.1. Results from Statistical Analysis Grouping

Figure 7 shows the number of clusters the data were split into after applying the clustering algorithms
(Canopy, Cobweb, EM, FarthersFirst, FilteredClusterer, HierarchicalClusterer, MakeDensityBasedClusterer).
The majority of these algorithms split the examined locations into two clusters, while the EM algorithm
grouped all nine locations into one cluster. Finally, the Cobweb algorithm assigned each location to its own
cluster, namely nine.

Figure 8 shows the accuracy of correct clustering of the samples from the clustering algorithms
used in our experiments. The lowest performance was attained by EM and Cobweb algorithms with
33% accuracy. The K-means algorithm had the best performance (89%), with k = 3 for both of the
distance functions considered. The remaining algorithms had a similar performance, which was
approx. 66%.
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Figure 7. Number of clusters different clustering algorithms grouped the supplied data.
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Figure 8. Precision of correct cluster classification for different clustering algorithms.

5.2.2. Results from NN-Based Classification

In order to test the NN-based classification, we initially tested the effect of the division of
the dataset into training, validation and testing subsets. Figure 9 shows that the best results for
both Cross-entropy and Percentage of error were achieved, with significant differentiation to other
alternatives for the division with 60% training, 20% validation and 20% testing. Accordingly, the rest
of the experimentation on the NN-based classification was done with this division ratio.

The next experiment focuses on the on the effect of the hidden neurons on Cross-entropy and
Percentage of error. Figure 10 shows the results obtained for a variety of different hidden neurons’
values ranging from 1 to 10,000. The results indicate that the best result as far as cross-entropy is
concerned is achieved for 1000 hidden neurons while the lowest percentage of error is achieved for
2500 hidden neurons, though cross-entropy’s difference between 1000 and 2500 hidden neurons is
almost negligible.
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Figure 9. Cross-entropy and Percentage of error for varying divisions of the dataset into training,
validation, and testing subsets.
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Figure 10. Cross-entropy and Percentage of error for varying hidden neurons.

5.3. Results’ Discussion

Based on the feature vector used and the experiments carried out, the performance evaluation
of the statistical analysis’ grouping results indicates that, for algorithms automatically selecting the
number of clusters for the available data, the selected locations can be separated into two microclimates,
the “Valley” and “Beach - Hill,” a merger of the areas that belonged to the microclimates “Beach”
and “Hill” based on our initial hypothesis. Nevertheless, given the option of 3 clusters, the K-means
algorithm presents the best precision of correct cluster classification, significantly exceeding the
performance of the other methods (89% to 66%). This discrepancy is attributed to the generality of the
examined algorithms, the high correlation between “Beach” and “Hill” type measurements as well as
the small number of locations and short time-span examined.
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The results obtained by the NN-based classification exhibit two significant takeaways:

• The variability of the division of the dataset into training, validation and testing subsets, as shown
in Figure 10, affects both Cross-entropy and Percentage of error of the classification process but the
effect is of limited breadth. For all variations tested, the difference between min and max values
were 4.1% for the Cross-entropy and 6.4% for the Percentage of error. In contrast, the variability
of the hidden neurons showed a rather significant effect with the difference between min and max
values being 64.4% for the Cross-entropy and 23% for the Percentage of error. It is thus crucial for
the effectiveness of the proposed methodology to identify the size of hidden neurons that keep
both Cross-entropy and Percentage of error at their lowest values.

• The performance of the classification in absolute values was shown to be high based on both the
Cross-entropy and Percentage of error results obtained. Qualitatively, Cross-entropy assesses
how accurate a model is at predicting some test data and thus comparing the 2 distributions
which get their minimal value when the distributions are equal. The trend shown in Figure 10, of
Cross-entropy minimising up until 2500 hidden neurons, indicates the progressive and very close
equal case of the 2 distributions and thus the accuracy of the NN model in predicting the test
data. The Percentage of errors is similarly inline with the Cross-entropy results as both metrics
are approximately over 85% of the best scenario.

The high performance of the collected results’ clustering and classification obtained herein, in
combination with the results obtained by Kalamatianos and Avlonitis [17], constitute a promising
direction, when viewed as complementary, for the identification of microclimates related to the olive
fruit-fly’s life-cycle that may subsequently be modelled into accurate population dynamics predictions
of the olive fruit fly.

6. Conclusions

In this work, methods for the identification of localised environmental/climate conditions
(microclimates) related to the life-cycle of the olive fruit fly are proposed. The two methods employed
herein—the statistical analysis and the Neural Network based classification—are complementary with
one another, aiming to provide the required initial clustering and the subsequent classification of
sensory records into the existing clusters with focus on efficiency and effectiveness.

Based on interrelated environmental and pest data collected from olive groves in North Western
Kerkyra, Greece, the two methods were applied and extensive experimentation indicated very
promising results for both parts of the proposed methodology. Qualitative evaluation of the results
obtained indicated the applicability of the proposed method for real-life uses.

Future plans for this research domain will focus on more detailed and diverse environmental
measurements (location and attribute wise) as well as more frequent pest measurements that are based
on smart-traps that minimise the manual interaction as much as possible. Given the larger volume of
data aimed for, methods that expand from the shallow Neural Networks presented here to their deep
equivalent are also part of future plans.
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